

An introduction to Analytical Testing for Per- and Polyfluoroalkyl Substances (PFAS)

April 23rd, 2024

Tammy Chartrand, National PFAS Program Lead

10 Laboratories *including Halifax -2022

20+ **Support Locations**

20+ Years

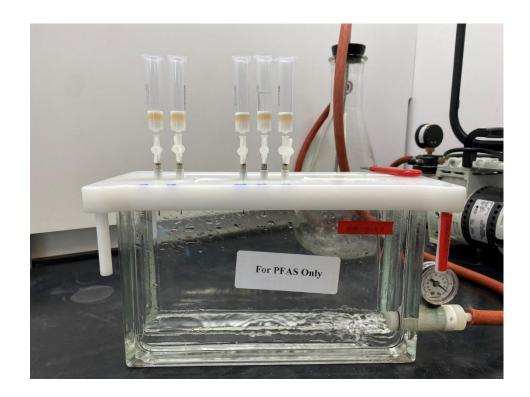
175K+/yr. Samples Processed @

WT Hub

Complimentary pick-ups within service areas

24/7 drop-off and pick-up access

Dedicated, responsive Client Service team


Our Canadian Presence

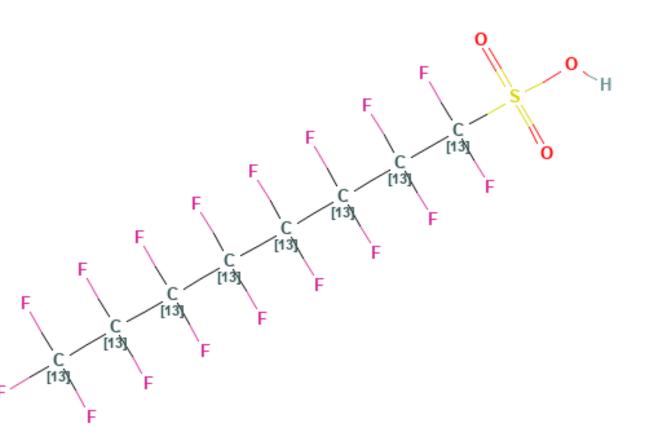
ALS

- General Principles and Method overview
- Targeted analysis
 - Drinking water
 - Non-Potable water
 - Soil/Solid
- Qualitative Techniques
- Sample Collection and Handling
- Quality Control

right solutions. right partner.

General Principles and Method Overview

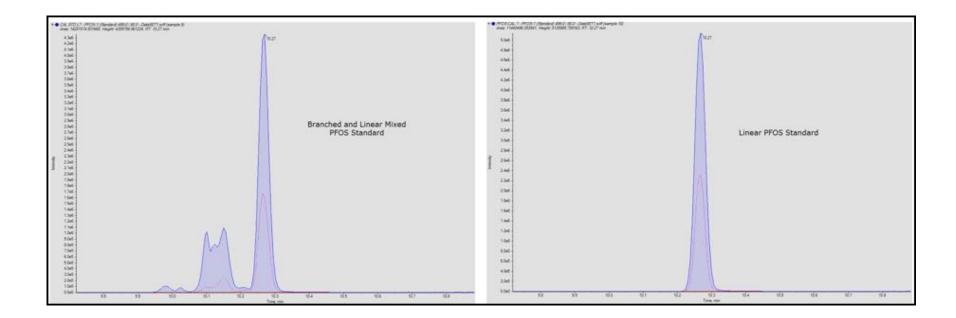
LC-MS/MS analysis of PFAS


- Selective and sensitive
- Fast and reliable
- Versatile
- Low reporting limits
 - ng/L
 - µg/kg

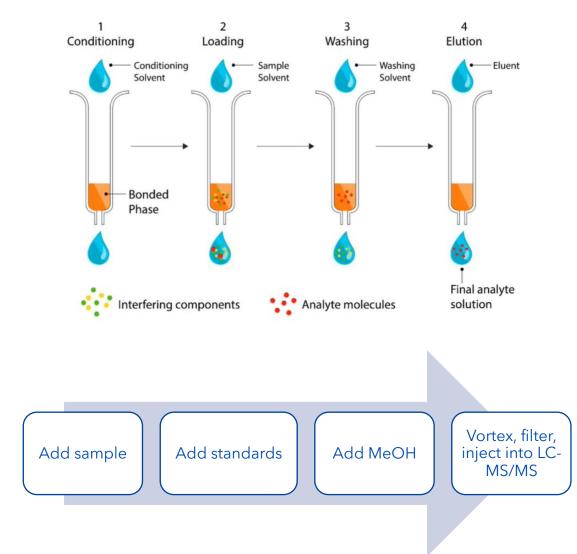
LC-MS/MS - Liquid chromatography coupled with tandem mass spectrometry

Isotope Dilution

- Isotopically labeled standards
- Same physical and chemical properties as native compounds, but with different mass
- Used to track losses and matrix interference
- Great accuracy and precision



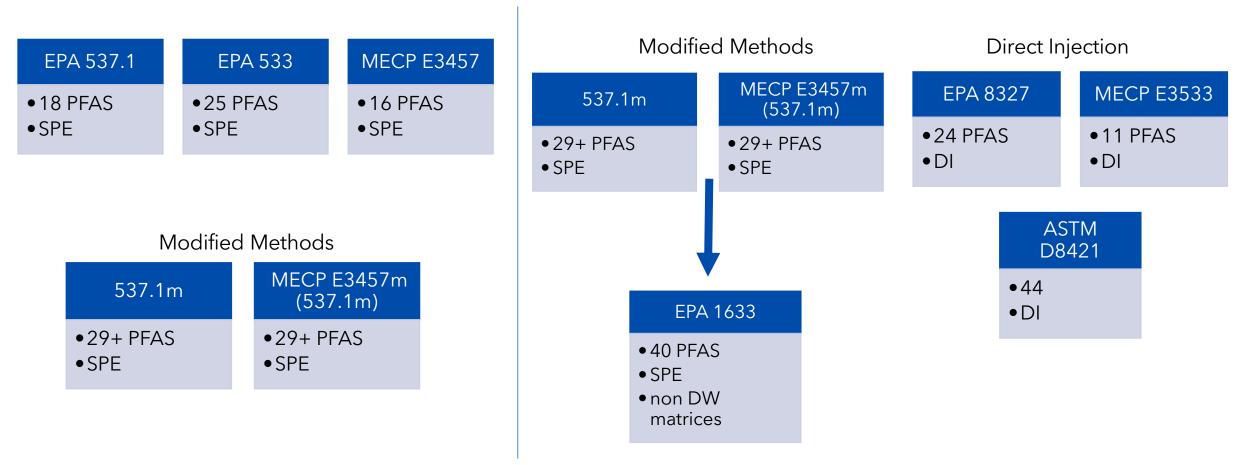
Branched and Linear Standards



- Many PFAS in the environment are found as a mixture of branched and linear isomers
- Quantitation using a mixed linear/branched standard will be more representative of environmental contamination and therefore more accurate
- Mixed standards are used where available (11)

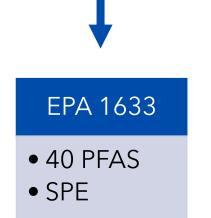
Sample preparation - SPE vs DI

- Solid Phase Extraction (SPE)
 - Used in most PFAS methods
 - Cleanup sample / remove interfering components
 - Complex and difficult matrices (including soil)
 - Low level RLs (2 ng/L)
- Direct Injection (DI)
 - Minimal sample preparation (no cleanup step)
 - Only for aqueous samples (for now)
 - Higher RLs (20 ng/L)



Method Overview - Water

Drinking Water


Non-Potable Water

Method Overview - Soil

ALS Methods

Drinking Water

E3457m (537.1m)

- 29+ PFAS
- SPE
- Low level RLs
- 10 day TAT

Non-Potable Water

E3533m

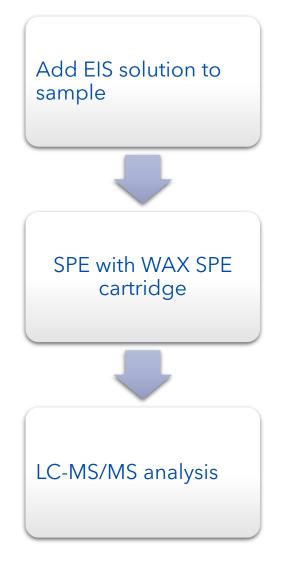
- 40+ PFAS
- Direct Injection
- <u>Routine</u> Level RLs
- 10 day TAT

EPA 1633 • 40+ PFAS • SPE • <u>Trace</u> level RLs

• 15 day TAT

Soil

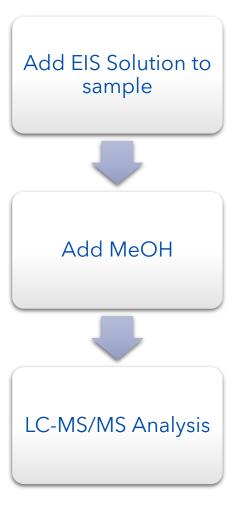
EPA 1633


- 40 PFAS
- SPE
- Trace level RLs
- 15 day TAT

right solutions. right partner.

Targeted Analysis

Drinking Water


E3457m (537.1m)

- 29+ PFAS
- SPE
- Low level RLs
- 10 day TAT

- Preserved
- Whole bottle extraction
- Used for regulatory compliance
- ~2 ng/L
- Modified Method:
 - reporting up to 40 compounds

Water Samples - Routine Level

E3533m

- 40+ PFAS
- Direct Injection
- <u>Routine</u> Level RLs
- 10 day TAT

- Only for non-potable water
- Can be used for samples where high concentrations are expected, and low-level analysis is not needed
- Screening method and contaminant delineation
- Highter RLs (~20 ng/L)
- Lower cost and faster TAT

Water Samples - Trace Level Analysis

EPA 1633

- •40+ PFAS
- SPE
- <u>Trace</u> level RLs
- •15 day TAT

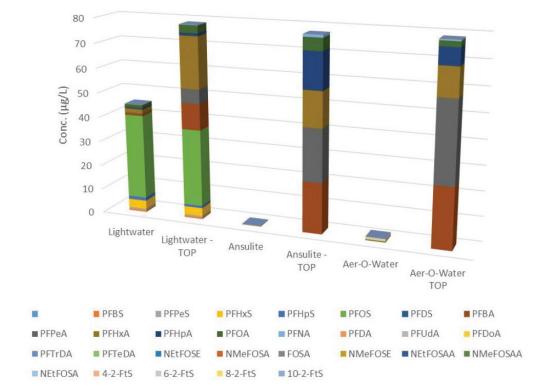
- Only for non-potable water
- Becoming new industry standard
- Sample prescreening
- TSS analysis (50 mg)
- Additional Carbon cleanup
- Regulatory compliance
- Lowest detection limits (~2 ng/L)
- Higher cost and longer TAT

EPA 1633

- 40 PFAS
- SPE
- Trace level RLs
- 15 day TAT

- Becoming new industry standard
- Sample prescreening
- Total solid determination (% solid)
- Additional Carbon cleanup
- Regulatory compliance
- Lowest detection limits ~0.5 ug/kg

- ✓ Increased number of target analytes
- ✓ Applicable to many matrices
- ✓ Improved sensitivity for complex samples (lower RLs)
- ✓ Sample pre-screening and Total solids
- ✓ Extensive QC acceptance criteria

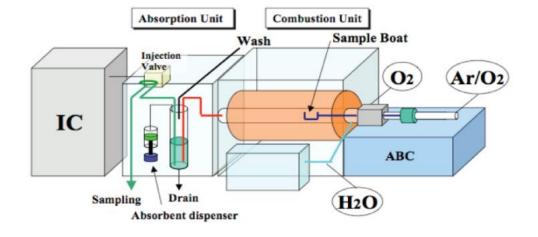

right solutions. right partner.

Qualitative Techniques

Total Oxidizable Precursor Assay (TOP Assay)

- TOP Assay is designed to expose underlying PFAS outside of the standard targets
- Samples is oxidized to transform any precursor compounds into PFAS end products
- Two data sets are provided: Pre- and Post-Oxidation

- <u>Indication</u> of precursors and potential transformation products
- Still limited to target analytes (cannot see all oxidation products)
- Higher cost (sample analyzed twice)



Total Organic Fluorine (TOF)

- Simple way to <u>estimate</u> the total mass of PFAS in a sample using the concentration of organic fluorine
- Using Combustion Ion Chromatography (CIC)

- No information on specific PFAS compounds
- Not selective for PFAS
- Higher RLs (1.5 ug/L = 1500 ng/L)
- Can be used for: screening, for confirmation of being "PFAS free", and in conjunction with TOP assay and standard analysis, mass balance for treatment processes
- Lower cost

right solutions. right partner.

Sample collection and handling

Questions to ask before sampling

- What type of samples?
- What will the data be used for?
- Are there criteria you will be comparing too?
- What detection limits are needed?
- List of target PFAS?
- What method is best suited?
- Is there any existing information about what you expect to see in your samples?
 - Do the method RLs align?
 - Are there high concentrations?
 - Is there a defined source zone?

Consult with your lab!

Sample collection and handling

- Avoid materials where PFAS can adsorb to surface (glass)
- Avoid any potential sources of contamination including all sampling material
- Use of QC samples (blanks)
- Ensure you are taking a representative sample (ex. Limit solids in GW)
- Sample lowest to highest impacted area when possible
- Sample segregation from field to lab
- Submit to lab on ice (hold time 14-90 days)

Avoid	Acceptable alternative
Teflon™ pump or tubing	HDPE or Silicone tubing
Decon 90	Alconox [®] , Liquinox [®] , Citrinox [®]
LDPE or glass sample containers	HDPE or polypropylene containers ** ensure no Teflon™ liner
Chemical Blue Ice packs	Free ice
Waterproof field book	Metal clipboard / loose paper
Markers	Ball point pen or pencil
Water resistant or treated gloves / clothing	Powderless nitrile gloves / cotton clothing
Cosmetics, creams, sunscreen and related products	
pre-packaged food, aluminum foil, fast food wrappers or containers	
Plastic bags / packaging - screen before use	Polyethylene bags (Ziplock®)

Field QC samples

Trip Blanks. Analyte-free water prepared in a sealed sample container at the laboratory, transported from lab to sampling site and back to lab without exposure to sampling procedures.

Field Blanks. Analyte-free water poured into a sample container in the field, preserved and shipped with field samples. **Equipment Blanks.** Analytefree water poured over or passed through sampling equipment prior to collection of environmental samples.

Value

QA/QC In the Lab

- Extensive sample processing and laboratory cleaning procedures to ensure no background PFAS contamination
- Sample preparation equipment dedicated to PFAS
- Laboratory supplies and equipment selection to avoid PFAS
- Extensive QA/QC protocols
- Preparation and analysis of Laboratory Blanks

QC Parameter

Initial Calibration Curve

Instrument Sensitivity Check

Interference Check Standard

Calibration Verification Standard (CVS)

Continuing Calibration Verification (CCV)

Extracted Internal Standard (EIS)

Non-extracted Internal Standard (NIS)

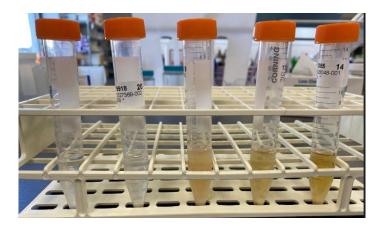
Ion Abundance Ratio

Method Blank (MB)

Laboratory Control Sample (LCS)

Laboratory Control Sample (LLLCS), Low-Level

Matrix Spike (MS)


Sample Duplicate

What causes detection limits to be raised?

- Matrix Interference
 - Other compounds in the sample that cause signal enhancement or suppression
- Dilution of Samples
 - 1. concentration exceeds the highest calibration level or
 - 2. matrix is suspected to be harmful to the instrument, or affect instrument QC
 - High concentration and matrix affects can cause instrument contamination (downtime for cleaning or parts replacement)
 - Dilution can impact other target analytes

- PFAS in biosolids and tissue (EPA1633)
- PFAS in air (EPA OTM45 and EPA OTM50)
- PFAS in surface wipes
- HRMS analysis : determination of PFAS structures by comparison to library

Special thanks to Sanja Ristecevic (LC-MS Department Manager) for her contribution to this presentation

Thank you! Questions?

Tammy.Chartrand@alsglobal.com